女人扒开腿让男人狂桶30分钟,亚洲乱码中文字幕综合,亚洲精品亚洲人成在线观看,中文无码制服丝袜人妻av

無鉛電子產品PCBA可靠性研究

2020-05-19 12:01:49 230

【文摘】電子工業(yè)正向無鉛電子產品轉移,既為了符合政府法規(guī),也為了通過產品的差異性提高市場份額。考慮到含鉛電子產品已經使用了40多年,所以采用無鉛技術代表了重大的變化。無鉛電子產品的制造涉及利用無鉛焊料合金將無鉛元件裝配到無鉛印刷電路板上。學術界及工業(yè)界針對的關鍵問題包括無鉛焊料合金的選擇、無鉛焊料合金的性質特點及在各種應力負載條件下的性狀,無鉛制造、物流及知識產權問題、無鉛裝配可靠性評價。


CALCE EPSC一直從事于研究,使工業(yè)界能順利地轉向無鉛電子產品。本文綜述了CALCE EPSC所承擔的對各種問題的研究,包括焊點可靠性、金屬間生長和元件水平可靠性問題(如在貴金屬預鍍引線座元件中錫枝狀晶體析出及蠕變腐蝕)。本文還提出了為了保證無鉛電子產品的長期可靠性所需要進行的研究,并探討了正在進行的實驗研究。


1. 引言
為了符合各項政府法規(guī)及社會問題,電子工業(yè)正從錫-鉛產品向無鉛產品轉移。這種轉移是被產量大的消費電子、計算機和通訊工業(yè)所驅動的[1-6]。在名為《無鉛電子產品》[1]這本書中介紹了工業(yè)的現狀、以及與無鉛電子轉移相關的關鍵技術問題和商業(yè)問題。
從定義上看,無鉛焊接組件涉及的是僅使用無鉛材料。這既適用于印刷電路板(PCB)的焊接材料(即表面安裝型的焊膏或通孔組件的波焊)也適用于元件端子及PCB安裝貼片上的表面電鍍。Ganesan 和 Pecht [1]對無鉛焊料合金成分進行了概述。目前,銀、銅、鉍及銻的不同組合而形成的富錫合金是無鉛焊料主要的可選材料。在這些材料中,錫-銀-銅(SAC)共晶合金(其熔點約217°C),似乎是一種最有前景的組成,這是基于目前工業(yè)趨勢,以及CALCE EPSC、國際錫研究所(ITRI)、國家電子制造促進會(NEMI)和日本電子信息技術工業(yè)協會(JEITA)的推薦。
三元SAC合金有300多項無鉛專利。專利取決于這樣一些因素如“焊料合金組成”、“焊點”或“金屬間化合物”。有關無鉛合金的專利和知識產權問題已經在CALCE承擔的研究中進行了討論。
CALCE EPSC還承擔了日本無鉛電子現狀的研究[16-17]、無鉛轉移對制造的影響研究[18-20]、無鉛陶瓷片狀電容器的斷裂研究[21-22]、無鉛焊點的性能研究[23-24]、無鉛小片連接的疲勞[25]。此外,CALCE已經進行了各種可靠性研究,這將在下面討論。


2. 無鉛可靠性研究

可靠性是向無鉛電子產品轉移中關注的問題。在利用無鉛焊料時突出的可靠性問題是,焊點可靠性、金屬間生長、預鍍引線座元件的蠕變腐蝕和錫枝狀晶體析出。在各種研究中已經針對這些問題進行了探討,在本部分將詳細介紹。
2.1 CALCE的焊點研究
下面是基于無鉛焊點可靠性文獻而得出幾個突出點。首先,這些研究中90%以上是利用SnAgCu(錫-銀-銅)合金進行的。其次,已經考慮了各種各樣的電子組裝,但大多數都是表面安裝區(qū)域布陣的元件如:球柵陣列(BGA)、晶片比例封裝(CSP)、倒焊晶片(FP)封裝、方形平裝(QFP)。結果發(fā)現,對無鉛波焊裝配的通孔元件的無鉛焊點長期可靠性的研究不夠;特別是,單面電路板。第三,已經研究了無鉛焊點在循環(huán)溫度條件下的熱機械耐久性,極端溫度循環(huán)范圍有:
0 ~ +100°C、-40 ~ +125°C或-55 ~ +125°C,而-40oC ~ 125oC溫度循環(huán)是最廣泛采用的。在上述試驗條件下失效前的循環(huán)次數一般達到幾千次。
另一方面,在使用壽命過程中焊點所經歷的應力狀況。與含有非柔性焊點的無鉛陶瓷晶片組裝(熱不匹配應力大)相比,組裝(如QFP和PBGA)中的焊點所經受的應力較少(由于焊點的柔性和熱不匹配應力低)。CALCE以往的研究得出結論,非柔性無鉛焊點(如在無鉛陶瓷晶片載體中的)的性能低于錫鉛(Sn-Pb)焊點[5-13]的性能。另一方面,對于塑料QFP和PBGA,情況正好相反(無鉛焊點的性能高于錫鉛焊點),這與工業(yè)界及學術界的幾個獨立的研究所報告的熱-機械耐久性結果是一致的。
最后,發(fā)現在振動負載條件下失效前循環(huán)的次數大大低于溫度循環(huán)下的次數。然而,與單一負載試驗相比,組合負載條件可能更代表實際的應用環(huán)境。目前還沒有在組合負載條件(如溫度循環(huán)和振動條件)下無鉛電子產品的長期可靠性的數據。
2.2 CALCE金屬間化合物的研究
為了產生可靠的SMT貼片加工焊點,在焊料-貼片界面上金屬間化合物(IMC)的形成是必要的。然而,生成的IMC過多則會導致界面脆化,從而在產品的使用壽命期間引起焊料失效。IMC的形成基于兩個因素:在焊接過程中焊料合金與貼片金屬間的潤濕反應;在產品的儲存及使用壽命期間固體狀態(tài)的老化。在潤濕反應過程中,焊料中存在的錫與貼片金屬發(fā)生化學反應形成金屬間化合物(IMC)。IMC形成的程度取決于貼片金屬的類型,如銅、鎳、浸銀或浸錫。在貼片金屬含有銅、浸錫和浸銀的情況下,則形成銅-錫IMC。而在浸銀的情況下,也形成銀-錫IMC。在貼片金屬含有鎳的情況下,則形成錫-銅-鎳IMC。
在固體狀態(tài)老化中,由于反應物在初始形成的IMC上的擴散從而形成了IMC。已經報告了由于高溫老化而使無鉛焊點上金屬間化合物的生成。CALCE EPSC [1, 14-15]所進行的研究表明,在暴露于高溫老化過程中,由于反應產物在固態(tài)擴散,使金屬間化合物生長。金屬間化合物的生長是時間的平方根的函數。例如,在150oC暴露1000小時后,銅貼片上的SAC焊料顯示出金屬間化合物的厚度約為7微米。CALCE EPSC的研究還表明,在浸銀的情況中,IMC的生長并不是時間的平方根的函數,這是由于銀在整體焊料中的溶解[14]。然而,還沒有調查金屬間化合物生長和振動的組合影響。
2.3 CALCE 蠕變腐蝕研究
蠕變腐蝕是一個質量遷移的過程,在這個過程中固體腐蝕產物遷移到一個表面上。它已經被確認為是一種失效機理,是電觸點及電接觸器的誤功能的原因。由于貴金屬預鍍引線座在印刷電路組裝中的應用,長期可靠性證明是現場使用IC元件的一個關注點?;谫F金屬冶金的預鍍引線座如Ni/Pd/Au,是圓形帶引線元件的一種商業(yè)上可得到的無鉛解決方案。德克薩斯儀表公司(TI)推出鎳上鍍鈀的引線座技術。在塑料元件的標準封裝過程中,封裝后的“修剪和成形”過程會將引線座材料(通常是銅)暴露到引線上。被暴露的銅為腐蝕的初始形成提供了場地。當元件在嚴酷環(huán)境中工作時,那么腐蝕過程就從被暴露的金屬區(qū)域開始并擴展。由于鈀是一種貴金屬,在使用環(huán)境中不發(fā)生腐蝕,所以鈀的電鍍?yōu)殂~腐蝕產物的移動提供了一個表面。在這種情況下,腐蝕產物可以移動到引線上,并逐漸遷移到封裝的模塑表面上。當相鄰引線上的腐蝕產物合并在一起時,腐蝕產物的導電性可導致元件的短路或信號損壞。
2.4 CALCE錫枝狀晶體析出研究
錫枝狀晶體析出是與無鉛電子元件相關的一個關鍵可靠性問題。枝狀晶體析出是被拉伸的純錫單晶體,已經被報告生長到超過10mm(250密耳)長(典型情況為1 mm或以下)、0.3至 10μm直徑寬(典型為1-3 μm)。枝狀晶體析出是在沒有作用的電場或潮濕條件下自發(fā)生長的(與樹枝狀不同),并且與大氣壓力無關(它們在真空下生長)。枝狀晶體析出可以是直的、彎折的、帶鉤的或分齒的,而有些被報告是中空的。它們的外表面通常是有條紋的。枝狀晶體析出可以非絲狀類型生長,有時被稱為塊狀或花狀。在電鍍后不久枝狀晶體析出可能就開始生長了。然而,生長的起動
也可能需要多年。枝狀晶體析出潛伏期不可預見的本性以及隨后的生長,是要求長期可靠運行的系統(tǒng)特別關注的問題。枝狀晶體析出發(fā)生在許多電鍍冶金中[1]。
CALCE EPSC一直與工業(yè)伙伴合作共同研究錫枝狀晶體析出以及模擬枝狀晶體析出的試驗方法。這些工作的目的是為了確定錫枝狀晶體析出的加速因素,并在需要高可靠性的應用(航空、國防)中示范錫枝狀晶體析出的轉移解決方案。


3. 需要做什么?

在向無鉛轉移中,對電子組件材料清單的改變正被高產量的消費電子、計算機和移動通訊工業(yè)所驅動,在這些工業(yè)中可靠性要求是不很嚴格的,而且產品壽命周期少于5年。然而,這些材料改變對長期或20年以上可靠性的影響卻不被了解。
在服務于要求長期(超過5年)可靠性的市場的許多產品中將采用無鉛電子。在許多應用中,電子產品將長期暴露于嚴酷溫度(過高、過低)、濕度、大氣污染及組合的熱-機械負載條件(溫度循環(huán) + 振動)。因而長期可靠性研究應綜合這些作用條件的相互影響。這些相互影響應包括(由于受高溫作用而引起的)不可接受的焊點上金屬間化合物生長、(由于受濕度和大氣污染而引起的)電子組件的電-化學降解、(由于長期暴露于低溫而引起的)錫瘟的形成、以及負載條件(振動、溫度循環(huán)、溫度循環(huán) + 振動)對電子組件的影響。CALCE EPSC已經起動了一項針對這些要求的研究。
3.1. 實驗的設計
設計實驗的目的是,確定無鉛電子產品在選擇應用環(huán)境中的長期(超過20年)可靠性。將分兩個階段進行研究。第一個研究階段包括將試樣長期儲存在高溫(150oC)、低溫(-40oC)、短期振動、長期高溫(135oC)/電氣偏壓高濕(85%RH)條件下。第二個研究階段包括使試樣經受長期溫度循環(huán)(10000個周期),(溫度在-40oC 和 125oC之間變化),以及組合的負載條件(溫度循環(huán) + 隨機振動)。
長期暴露于高溫的結果,將增加金屬間化合物在焊點上的生長。由于這些化合物本質上是脆的,所以在振動應力條件下它們會降低焊點壽命。因而,金屬間化合物的生長和振動應力環(huán)境之間的這種相互作用在建議的實驗中將被研究。另一方面,暴露于低溫將會增強富錫無鉛焊點中錫瘟的形成。目前還不了解在振動應力條件下這種現象對焊點壽命產生的影響。建議的實驗預計會對這種現象有所了解。電子產品長期暴露于潮濕條件將增加電化學過程,最終導致裝置、元件或PCB中金屬化腐蝕。在無鉛組件中這種機理得到進一步加強,由于較高的PCB組件溫度,可能引起比鉛基組件更大的惡化(材料降解污染物遷移)。
電子產品含有多種類型的元件:SMT元件(QFP、BGA、SOIC)、無引線載體、無源及通孔技術元件。選擇元件的基礎是,在焊點的柔性上產生變化(例如QFP與無引線陶瓷晶片載體)以及在焊點上產生熱不匹配應力(例如:塑料BGA與陶瓷載體)。其次考慮的因素是,在元件的引線電鍍表面上產生變化。引線電鍍表面的改變包括電鍍無光錫、錫-銅和錫-鉍。就BGA而言,工業(yè)似乎已經轉向于焊球組成SnAgCu。
在PCB組件方面,工業(yè)也已經轉向了SnAgCu (SAC)焊膏用于SMT元件的回流焊接、SAC 或Sn0.7Cu用于通孔元件的波焊。因而這些材料將被安裝到基于目前工藝條件的實驗裝備中。試驗板將由兩種類型的板技術組成:表面安裝和單面通孔。表面安裝板將采用高Tg FR4 (Tg=170oC 至220oC)和聚酰亞胺制成,并且具有一個菊花鏈結構從而能夠監(jiān)控電阻。板的尺寸為8英寸X 7英寸X 0.062英寸。單面通孔板是由CEM-1制成的,常用在許多電子系統(tǒng)包括洗衣機、干衣機。線路板將與選擇的封裝安裝在一起(帶有仿真硅夾模)。這些封裝都有導線接頭,用于連接相鄰的引線(而不是連接到夾模上),因而在安裝到試驗板上后,能夠對焊點電阻進行監(jiān)控。在應力試驗過程中,將利用商業(yè)可得到的電阻測量儀對封裝的電阻進行監(jiān)測。在隨機振動試驗中,振動應力水平將取決于它在線路板的位置。這個方面需要考慮替代元件。將利用PCB振動應力分析來確定試驗理想的元件替代方案。這些PCB還包含有一個結構,用于研究焊點的電化學降解。該結構由間隔為0.5 mm (20 密耳)的貼片組成。這個間隔代表目前工業(yè)上所用的貼片間距。在PCB裝配中,將焊膏回流焊接到這些貼片上,產生焊島。在HAST測試中,在這些島之間作用電偏壓,來模擬兩個焊點
間電遷移的效果。經受溫度循環(huán)的表面安裝板將在相鄰的每個元件上包含“熱斷路”特點,從而方便失效的元件立即被拆下。這個特點將通過保留失效波形而有助于失效元件的分析。
為了代表線路板組件實際的生產條件,所有組件都是在大規(guī)模生產廠中制造的。實驗包括商業(yè)可得到的PCB貼片:浸銀、浸錫、無電NiP/Au (ENIG)和有機可焊性保護劑 (OSP)。實驗模型也包括帶有目前含鉛材料和工藝的PCB組件。實驗設計如下:
pcba
圖1:為無鉛焊接產品的長期可靠性所設計的實驗
3.2. 研究的預期結果
本長期可靠性研究的主要預期結果如下:
? 長期暴露于高溫條件后,確定焊點上金屬間化合物生長的程度,焊點是利用高產量組件工藝生產的,并且采用了商業(yè)元件表面電鍍和PCB貼片表面電鍍的多種組合。
? 評價任何尚未了解的風險,例如長期暴露于低溫后在高錫焊點上錫瘟的形成。
? 確定帶有較厚的金屬間化合物以及可能的錫瘟的無鉛焊點的振動疲勞壽命和失效模式。
? 確定(由于高溫無鉛焊接引起腐蝕失效的)PCB降解所帶來的影響。
? 確定無鉛焊點在組合溫度循環(huán) + 振動條件下的壽命(與含鉛焊點比較),與多個相互作用因素的關系:高產量無鉛裝配工藝;元件類型,元件表面電鍍,PCB貼片表面電鍍。
? 確定在短期振動、溫度循環(huán)及組合溫度循環(huán) + 振動條件下焊點的失效機理及模式。比較無鉛組件的長期壽命和含鉛組件的長期壽命。


4. 結語

無鉛焊點在單一負載條件下短期耐久性(即少于5年),存在大量的數據。CALCE EPSC一直努力使工業(yè)能夠平穩(wěn)轉向無鉛電子。而對組合負載條件及長期耐久性的數據相當少。在服務于要求
長期(超過5年)可靠性的市場的許多產品中將采用無鉛電子。在許多應用中,電子產品將長期暴露于嚴酷溫度(過高、過低)、濕度、大氣污染及組合的熱-機械負載條件(溫度循環(huán) + 振動)。因而長期可靠性研究應綜合這些作用條件的相互影響。這些相互影響應包括(由于受高溫作用而引起的)不可接受的焊點上金屬間化合物生長、(由于受濕度和大氣污染而引起的)電子組件的電-化學降解、(由于長期暴露于低溫而引起的)錫瘟的形成、以及負載條件(振動、溫度循環(huán)、溫度循環(huán) + 振動)對電子組件的影響。CALCE EPSC已經起動了一項針對這些要求的研究。


5. 參考文獻

1. Ganesan, S. and Pecht, M., Lead-free Electronics, 2004 Edition, Edited by, CALCE EPSC Press, University of Maryland, College Park, Maryland
2. Casey, P., S. Ganesan and M. Pecht, “Challenges in Adopting Pb-free Interconnects for “Green” Electronics,” Proceedings of the IPC/JEDEC Second International Conference on Lead-free Electronic Components and Assemblies, pp. 21-32, Taipei, Taiwan, 2002.
3. P. Casey and M. Pecht, “Assessing Lead-free Intellectual Property,” Circuit World, Vol. 30, No. 2, pp. 46-51, 2004.
4. P. Casey and M. Pecht, “The Technical, Social and Legal Outlook for Lead-Free Solders,” IEEE International Symposium on Electronic Material and Packaging, pp. 483-492, Kaohsiung, Taiwan, December, 2002
5. Zhang, Q., A. Dasgupta and P. Haswell, 2003, “Viscoplastic Constitutive Properties and Energy-Partitioning Model of Lead-free Sn3.9Ag0.6Cu Solder Alloy”, ECTC 2003, New Orleans, Louisiana, USA, 2003
6. Zhang, Q., A. Dasgupta, P. Haswell and M. Osterman, 2003a, “Isothermal Mechanical Fatigue of Lead-free Solders: Damage Propagation and Time to Failure,” 34th International SAMPE Technical Conference, Baltimore, MD, 2003
7. Zhang, Q., Dasgupta, A., and Haswell, P. “Creep and High-Temperature Isothermal Fatigue of Pb-Free Solders”, Proceedings of IPACK 03: International Electronic Packaging Technical Conference and Exhibition, July 6-11, 2003, Maui, Hawaii, USA, 2003
8. Zhang, Q., Haswell, P. and Dasgupta, A. “Isothermal Mechanical Creep and Fatigue of Pb-free Solders”, International Brazing &Soldering Conference, San Diego, CA, February 16-19, 2003
9. Zhang, Q., Haswell, P., and Dasgupta, A. “Cyclic Mechanical Durability of Sn-3.9Ag-0.6Cu and Sn-3.5Ag Lead-Free Solder Alloys”, Proceedings ASME IMECE 2002, New Orleans, LA, 2002
10. Zhang, Q., Haswell, P., Dasgupta, A., and Osterman, M. “Isothermal Mechanical Fatigue of Pb-free Solders: Damage Propagation Rate & Time to Failure”, 34th International SAMPE Technical Conference, Baltimore, MD, November 4-7, 2002
11. Haswell, P. and Dasgupta, A., “Viscoplastic Constitutive Properties of Lead-free Sn-3.9Ag-0.6Cu Alloy,” MRS Proceedings, San Francisco, CA, 2001
12. Haswell, P., “Durability Assessment and Microstructural Observations of Selected Solder Alloys,” Ph.D. Dissertation, University of Maryland, College Park, MD, 2001
13. Haswell,P. and Dasgupta, A. “Microthermomechanical Analysis of Lead-Free Sn3.9Ag0.6Cu Alloys, Part I: Viscoplastic Constitutive Properties, and Part II: Cyclic Durability Properties”, Paper N2.1, MRS Proceedings, Vol. 682E, MRS Spring Symposium on Microelectronics and Microsystems Packaging, Editors: Boudreaux, Dauskardt, Last, and McCluskey, Chicago, 2001
14. Zheng, Y., Hillman, C., and McCluskey, P. “Effect of PWB Plating on the Microstructure and Reliability of SnAgCu Solder Joints”, presented on AESF SUR/FIN 2002 June 24-27, Chicago, IL, 2002
15. Zheng, Y., Hillman, C., and McCluskey, P. “Intermetallic Growth on PWBs Soldered with Sn3.8Ag0.7Cu”, presented on Proceedings of the 52nd Electronic Components & Technology Conference, pp. 1226-1231, San Diego, 2002
16. Y. Fukuda, P. Casey and M. Pecht, “Evaluation of Selected Japanese Lead-Free Consumer Electronics,” IEEE Transactions on Electronics Packaging Manufactruing, Vol. 26, No. 4, pp. 305-312, October 2003.
17. Y. Fukuda, M. Pecht, K. Fukuda and S. Fukuda, “Lead-Free Soldering in the Japanese Electronics Industry,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 3, pp. 616-624, September, 2003
18. R. Ciocci, and M. Pecht, “Questions Concerning the Migration to Lead-free Solder,” Circuit World, Vol. 30, No. 2, pp. 34-40, 2004.
19. R. Ciocci, “Lead-free Solder Replacement: Beyond the Material Substitution,” Environmentally Conscious Manufacturing II, Vol. 4569, pp. 100-108, Newton, USA, 28-29, October 2001
20. R. Ciocci, “Lead-free Solder and the Consumer Electronics Market,” Proceedings of 2001 Green Engineering Conference, July 29-31, 2001, Roanoke, VA
21. N. Blattau and C. Hillman, “Has the Electronics Industry Missed the Boat on Pb-Free? Failures in Ceramic Capacitors with Pb-Free Solder Interconnects,” IPC/JEDEC 5th International Lead Free Conference on Electronic Components and Assemblies, San Jose, CA, March 18-19, 2004
22. N. Blattau, D. Barker and C. Hillman, “Lead Free Solder and Flex Cracking Failures in Ceramic Capacitors,” 2004 Proceedings - 24th Capacitor and Resistor Technology Symposium, San Antonio, Texas, March 29 - April 1, 2004
23. J. Wu and M. Pecht, “Fretting Corrosion Studies For Lead-Free Alloy Plated Contacts,” Proceedings of the 4th Electronics Packaging Technology Conference, Singapore, pp. 20-24, December 10-12, 2002
24. J. Wu, M. Pecht, and R. Mroczkowski, “Electrical Characterization of Lead-Free Solder Separable Contact Interfaces,” Journal of Surface Mount Technology, Vol. 14, Issue. 2, pp. 25-29, June 2002. Also presented at Pan Pacific Microelectronics Symposium, pp. 125-130, Maui, Hawaii, February 5-7, 2002
25. P. McCluskey, “Fatigue and Intermetallic Formation in Lead Free Solder Die Attach,” Proceedings of IPACK'01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Kauai, HI, July 9-13, 2001
26. Xie, J. S. and M. Pecht, “Palladium-plated Packages: Creep Corrosion and Its Impact on Reliability,” Advanced Packaging, Vol. 10, No. 2, pp. 39-42, February 2001.
27. Zhao, P. and M. Pecht, “Field Failure Due To Creep Corrosion On Components With Palladium Pre-Plated Leadframes,” Microelectronics Reliability, Vol. 43, pp. 775-783, May 2003.
標簽: pcba

微信公眾號